
Using Smart Cards for Tamper-Proof Timestamps on Untrusted Clients

Guenther Starnberger, Lorenz Froihofer and Karl M. Goeschka

Vienna University of Technology
Institute of Information Systems

Argentinierstrasse 8/184-1
1040 Vienna, Austria

{guenther.starnberger, lorenz.froihofer, karl.goeschka}@tuwien.ac.at

Abstract—Online auctions of governmental bonds and CO2

certificates are challenged by high availability requirements
in face of high peak loads around the auction deadline.
Traditionally, these requirements are addressed by cluster
solutions. However, with strong requirements regarding hard-
ware ownership and only a few auctions per owner per year
hardware clusters are a rather ineffective solution.

Consequently, we contribute with a solution that alleviates
the dependability problems by shifting them into the security
domain: Key idea is to provide a secure timestamp service that
allows users to place bids locally until the deadline, independent
of server availability. This allows to mitigate peak-loads and
network or server outages as the transfer of bids to the server
can be delayed until after a performance peak or the repair
of a failed component.

In this paper in particular, we contribute with a secure
time synchronization and timestamping protocol tailored to
online auctions where we apply secure timestamps on smart
cards locally connected to the bidder’s computer. Moreover,
our timestamping protocol is robust with respect to man-in-
the-middle delay attacks. Finally, we prove the feasibility of
our approach based on a .NET smart card implementation and
conclude with a discussion of current smart card limitations.

Keywords-Smart cards; Synchronization; Availability; Secu-
rity;

I. INTRODUCTION

First-price sealed-bid auction [1] scenarios generally ex-

hibit high peak loads around the auction deadline as a major-

ity of bidders tries to submit bids shortly before the deadline.

Moreover, these auctions also exhibit high dependability

requirements as an auction canceled due to technical reasons

can lead to significant financial losses, because of market

conditions changing over time. As a consequence, systems

need to be designed for excessive workloads and high avail-

ability, leading to massive over-provisioning and high costs.

However, for some governmental auctions, such as bond auc-

tions and CO2 certificate auctions, this over-provisioning is

not cost efficient as auctions are only conducted a few times

a year with the hardware being idle during the remaining

time. Moreover, cloud computing solutions are not an option

due to issues such as data ownership.

Key idea of our approach is to alleviate the dependability

problems by shifting them into the security domain and

by consequently solving the new security problems [2].

We increase dependability of the system by temporarily

decoupling the individual components of the system from

each other, and allowing users to place bids on trusted

devices physically located at their place. However, by doing

so we are decreasing the security of the system, as we

are giving adversaries new options to attack the system. To

address these issues we designed and implemented a secure

timestamping approach that allows us to assign accurate

timestamps to bids when they are placed and—in the case

of high peak loads or temporary outages—queue the bids at

the client and transfer them to the server at some later point

in time.

One security problem with client-side timestamping is

that software running on clients cannot be protected against

attacks by malicious users. Manipulating the timestamps

would enable a user to place bids even after the auction’s

deadline, thereby gaining potential advantages from infor-

mation available after the deadline that may influence the

user’s decision on the bid.

By shifting the timestamping process from an untrusted

computer to a secure device we can prevent users from

tampering with critical parts of the software. However, only

securing the software is not sufficient as users still retain

full control over the network between the secure device

and the auctioneer. As a consequence, malicious users can

selectively delay packets and cause deliberate offsets during

time synchronization. Our timestamping protocol mitigates

these issues by enhancing on existing interval-based time

synchronization techniques.

Our main contributions in this paper are a timestamping

protocol and implementation capable of operation on secure

devices and an examination of the restrictions placed by

common smart card environments. Furthermore, we con-

tribute with a threat model and propose techniques to further

increase the security of such systems.

First, Section II discusses related work in academic and

commercial areas to set the technological baseline. We

2010 International Conference on Availability, Reliability and Security

978-0-7695-3965-2/10 $26.00 © 2010 IEEE

DOI 10.1109/ARES.2010.78

96

Server 8:
00

:0
0

8:
00

:0
0

(T
1)

8:
00

:0
1

(T
2)

8:
00

:0
5

(T
3)

8:
00

:1
6

8:
00

:2
1

8:
00

:3
5

(T
4)

8:
00

:2
1

(o
ffs

et
: -

15
)

8:
00

:0
6

8:
00

:0
1

Client

Adversary

~~

Figure 1. Asymmetric propagation delay

continue in Section III with an overview of our application

scenario, our system architecture, our trust model, and an

examination of delay attacks against time synchronization

protocols. Based on this we contribute in Section IV with

an interval-based time synchronization protocol prove the

feasibility in Section V based on our smart card implemen-

tations. Finally, we draw our conclusions in Section VI.

II. RELATED WORK

While secure devices and time synchronization protocols

are both well researched topics, the combination of using

a secure time synchronization protocol in trusted hardware

devices under physical control of potential adversaries has

not been adequately researched in the academic area. This

section introduces related time synchronization protocols

that influenced the design of our smart card based time

synchronization.

Network Time Protocol: The Network Time Protocol

(NTP) [3] is a time synchronization protocol used on the

Internet. To obtain timestamps from a remote server, NTP

records four timestamps (T1–T4) as depicted in Figure 1. T1

and T4 are assigned according to the client’s clock, while

T2 and T3 are assigned according to the server’s clock.

NTP then uses the formula
(T2−T1)−(T4−T3)

2 to determine

the offset between the client’s and the server’s clock. Using

the offset, it tries to estimate the skew of the local clock in

relation to the server’s clock and then gradually corrects the

value and the frequency of the clock using a software-based

phase-locked-loop (PLL) implementation.

NTP security analysis: A security analysis of NTP

protocol version 2 was conducted in 1990 by M. Bishop [4].

While the evaluated NTP version is dated, the analyzed

attacks, such as replay attacks, delay attacks, and denial-

of-service attacks, are still relevant to today’s time synchro-

nization protocols.

Interval based time synchronization: Interval based

time synchronization as proposed by Marzullo and Ow-

icki [5] is an alternative view on time synchronization.

Interval based protocols account for the fact that time

synchronization with perfect precision and accuracy is not

possible and therefore try to determine an interval that con-

tains the real time, instead of a single point that represents

Smart card
Untrusted client Server

Circumventive user

Auctioneer

Figure 2. Application scenario

the real time. An accuracy interval represents the fuzziness in

setting, keeping and reading the time of a clock. For a perfect

clock the length of such an accuracy interval is zero. In the

real world, the effects of clock skew and network delays

lead to an accuracy interval with a length larger than zero.

With increasing time (without time synchronization) the size

of the accuracy interval increases because of inaccuracies of

the clock.

III. APPLICATION SCENARIO

Our main application scenario are governmental auctions

of CO2 certificates and bonds with potentially up to thou-

sands of bidders. These auctions use a variant of a first-

price sealed-bid system [1] where the order of different

bidder’s bids does not matter and where bidders do not learn

about bids placed by other bidders before the fixed auction

deadline. There is no single winner, as the auctioned items,

such as CO2 certificates, are distributed among the best

bids accordingly. Furthermore, bidders are allowed to submit

updates to their bids until the auction deadline. Although

unanticipated because of auction characteristics, experience

in bond auctions has shown that most bidders place their bids

shortly before the deadline, possibly due to psychological

issues.

A. System architecture
Figure 2 depicts the individual components of our system

architecture. The smart card is connected to the user’s

computer that relays messages between smart card and

auctioneer. A circumventive user is able to attack different

parts of the system. For example, physical attacks can be

used against the smart card itself, delay attacks can be

used against time synchronization messages relayed by the

computer, and any software running on the computer may

be manipulated.

• The auction server is responsible for hosting the auc-

tion Web application and additionally acts as a time

server. Bids timestamped by a smart card are relayed

over the untrusted client to the auction server.

97

• The smart card timestamps bids provided by the un-

trusted client with the current time. It obtains the

time using a time synchronization protocol. Messages

between smart cards and time servers are relayed by the

untrusted client in between. Messages between smart

cards and bidders are secured with QR-TANs [6].

• The untrusted client enables communication between

smart cards and auctioneer. Messages transmitted be-

tween a smart card and an untrusted client are encoded

as APDUs (Application Protocol Data Unit), while

the untrusted client uses standard Internet protocols,

such as TCP (Transmission Control Protocol) and UDP

(User Datagram Protocol), to communicate with the

auction server. Only non-security-critical software op-

erations are executed on the untrusted client.

To provide correct time on trusted devices, such as smart

cards, we employ a secure time synchronization protocol.

The given reference time is obtained from servers controlled

by the auctioneer.

B. Attacks against time synchronization

To motivate the problem, Figure 1 shows an example of

how an adversary can use asymmetric propagation delays

to affect time synchronization when a time synchronization

protocol assumes symmetric propagation delays and uses

the offset formula used by NTP (described in Section II).

Initially, client and server are perfectly synchronized. The

client sends its request at 8:00:00, which is received by the

server at 8:00:01. The server processes the request and sends

the response at 8:00:05. On the way back to the client, the

response is delayed by an adversary, causing the client to

receive the delayed response at 8:00:36. When the client

calculates the offset to the server, this yields a value of

−15 seconds, implying the time 8:00:36 on the client’s

clock corresponds to the time 8:00:21 at the server’s clock.

Therefore, the adversary delaying the message on the way

back to the client eventually delays the client’s clock by 15
seconds.

Lundelius and Lynch proved that the optimum bound

achievable when synchronizing n clocks is u × (
1− 1

n

)
,

where u is the uncertainty in message transmission time

and n is the number of hosts [7]. In a traditional client-

server setup where a single client obtains its time from

a single server, the maximum message transmission delay

between client and server limits the uncertainty, and thereby

the possibilities of an attacker to u
2 . In terms of the four

timestamps T1–T4 we can define the maximum error as
(T4−T1)−(T3−T2)

2 .

C. Trust model

Our application scenario is fundamentally different from

traditional time synchronization and timestamping scenarios.

In traditional time synchronization protocols, individuals

interested in obtaining accurate timestamps have full control

BidderIssuer

Auctioneer

Bidder terminal

Time serverAuction server

Smart card

Figure 3. Trust model

over clients. On the other hand, servers are often only

reachable over an untrusted network. In some cases, such

as public Network Time Protocol (NTP) servers, individual

servers cannot be fully trusted.

In our scenario, the auctioneer has full control over the

time servers, but no physical control over the clients. Suc-

cessfully tampering with smart cards may allow malicious

users to issue bids even after the deadline has already

passed. Therefore, it must be guaranteed that the underlying

hardware is sufficiently secure against such types of attacks.

Figure 3 shows the trust relationships in our application

scenario. Green solid arrows indicate that the respective role

is able to reasonably trust another role or component, if

reasonable security mechanisms, e.g., encryption of network

links or installed firewall and antivirus scanner, are applied

or contracts between different roles are arranged. Otherwise,

the untrusted relationship is indicated via a red dashed arrow.

Based upon existing technology, the auctioneer is able to

trust the own infrastructure (auction server, network links,

and smart card), the issuer, and the time server infrastructure.

Although, we assume the auctioneer may trust the bidder in

general, she cannot fully trust the bidder as the manipulation

of the clock on the bidder’s terminal is undetectable. Con-

sequently, the auctioneer has to distrust the bidder with this

respect. Similarly, the auctioneer has to distrust the bidder’s

terminal and the communication channel between terminal

and smart card.

The communication between the smart card and the time

server can be trusted with respect to message integrity,

but as communication is only performed via the bidder’s

terminal, communication delays might be introduced by

the bidder to influence the time synchronization algorithm.

Therefore, this establishes a source of distrust for smart card

- timeserver communication. Similar considerations apply to

the communication link between bidder terminal and auction

server as the bidder might interrupt the network connection

to pretend a network failure.

98

IV. TIME SYNCHRONIZATION AND TIMESTAMPS

For time synchronization and timestamping we are using

an interval based approach based on Marzullo’s work [8],

allowing us to represent time as a correctness interval that

represents the inaccuracies due to network delays and clock

characteristics, such as clock skew and limited precision.

An interval representing a particular time is correct, if the

represented time is within the bounds of the interval. Two

intervals are compatible if they represent the same time

value, such as “5 pm” or “now”. Two intervals are consistent
if their intersection is not zero. Thus, in the case where two

compatible intervals are not consistent, at least one of these

intervals must be incorrect. In our algorithm we use offset
intervals that represent the difference between the smart

card’s local clock value and the values of the two intervals

endpoints.

Both, our time synchronization and timestamping algo-

rithms are adapted to smart card environments that may

exhibit high propagation delays between smart card and

timeserver. In particular, our contributions over the state of

the art are:

• An adaption of Marzullo’s interval approach to guaran-

tee that each time synchronization step—independent

of the propagation delay—only increases, but never

decreases, the accuracy of the local clock.

• An adaption of Marzullo’s intersection approach to a

single time server scenario, allowing us to detect if an

attacker has been able to successfully tamper with the

time on the smart card.

• A roundtrip delay mitigation approach that allows use

to decrease the size of intervals applied as timestamps,

if there are confirmed problems at the auctioneers

infrastructure that lead to consistent, measurable delays

in the processing of time stamps.

The definitions used in this section are based on Network
Time Protocol Version 4 – Reference and Implementation
Guide [9] by David L. Mills and on Maintaining the time
in a distributed system [8] by Marzullo and Owicki.

A. Time synchronization

We define our time synchronization protocol based on al-

gorithms implementing the different functions: Algorithm 1

illustrates the main control loop in the client. The time

transfer from the server to the client is done by Algo-

rithm 2 with Algorithm 3 being responsible for increasing

the interval’s size due to clock skew. Both algorithms work

with offset intervals that represent the uncertainty in clock

synchronization due to clock skew and network delays, for

example. As these offset intervals do not represent a real

point in time, Algorithm 4 converts the offset intervals

to absolute time intervals that are then cryptographically

signed in Algorithm 5. The interpretation of the timestamped

intervals is the server’s task and illustrated in Algorithm 6.

Time Deadline

Interval 1

Interval 2

Intersection

Figure 4. Interval overlapping with deadline and intersection between two
intervals

1) Time synchronization protocol: Algorithm 1 shows

the time synchronization algorithm running on the client.

First, the algorithm initializes the offset interval ilocal to

[−∞,∞]—as we do not have any information about the

current time yet. It proceeds, by obtaining an interval from

the timeserver that is subsequently stored in iserver . The

local clock value returned by get time() when the time

synchronization step was started is stored in tlast set .

If the two compatible intervals ilocal and iserver repre-

senting the current time do not overlap, we can conclude

that one of these intervals must be incorrect. In either case

this represents a fatal error and we disable the smart card,

requiring the bidder to use other means to submit bids.

As the inverse condition does not need to be true (two

compatible intervals may intersect if one or both of these

intervals are incorrect), this test does not detect all types

of failures. However, the maximum error in these cases can

be considered rather low, as it cannot be larger then the

smallest value of iserver obtained during all preceding time

synchronization steps.

When assuming that both ilocal and iserver are correct,

we can follow that the intersection of ilocal and iserver will

also represent the correct time. Therefore, we replace ilocal
by the intersection of ilocal and iserver to decrease the size

of the resulting interval and to more accurately represent the

current time. An example is given in Figure 4.

Finally, the algorithm waits for the next time synchroniza-

tion step while allowing the smart card to timestamp bids

in between. Before executing the next round, we increase

the size of ilocal with the extend() function, to account for

inaccuracies due to clock skew.

2) Time transfer from server to client: The

recv interval() function given in Algorithm 2 is used

to obtain the time from a remote server: After receiving

the response by the server, the smart card first calculates

the server’s synchronization distance (Γ) from the server’s

root dispersion (E) and the server’s root delay (Δ), which

are both part of the NTP response message [3]. The

synchronization distance represents the maximum error

in the server’s response due to all causes. Afterwards

two offsets are calculated, by decreasing and increasing

the obtained offsets by half the roundtrip delay of the

time synchronization request. Finally, the offset values are

99

Algorithm 1 Obtaining time from server

ilocal ← [−∞,∞]
loop
tlast set ← get time()
iserver ← recv interval()
if intersection(ilocal , iserver) == 0 then
abort with error()

end if
ilocal = intersection(ilocal , iserver)
while wait for timeout() do
{// Apply timestamps on incoming bids}

end while
ilocal = extend(ilocal)

end loop

combined with the synchronization distance and returned

as a single offset interval.

Algorithm 2 recv interval(): Time synchronization request

response ← receive response from server()
Γ ← response.E + response.Δ

2

o1 ← (T3−T4) {// (T3−T4) == offset− roundtrip time
2 }

o2 ← (T2−T1) {// (T2−T1) == offset+ roundtrip time
2 }

iserver ← [o1 − Γ, o2 + Γ]
return iserver

3) Clock skew: The extend() function in Algorithm 3

increases an interval to account for the effects of clock

skew. ρK represents the precision of the remote clock

and is included as part of the time server’s response. ρ
represents the precision of the local clock and is estimated

by the auctioneer. Φ(X) represents the maximum error

due to clock skew during a period of length X . In our

application, we are interested in the clock skew since the

last time synchronization step tlast set . extend() combines

the different effects of these components, and increases the

size of the interval accordingly.

Algorithm 3 extend(i): Transform offset interval due to

effects such as clock skew

ε ← ρK + ρ+Φ(get time()− tlast set)
inew ← [i.left offset − ε, i.right offset + ε]
return inew

B. Timestamping

1) Timestamping: When timestamping a bid we first con-

vert the offset intervals ilocal and iserver to absolute intervals

with the approach shown in Algorithm 4. Afterwards, we

append these absolute intervals plus a sequence number to

the bid, and sign the resulting data with a digital signature

as shown in Algorithm 5.

Algorithm 4 abstime(i): Transform offset interval to cur-
rent time

tcurrent ← get time()
i ← extend(i)
iabs ← [tcurrent + i.left offset , tcurrent + i.right offset]
return iabs

Algorithm 5 timestamp(bid , ilocal , iserver , tlocal): Times-

tamp incoming bid

seq ← seq + 1
ts local ← abstime(ilocal)
tsserver ← abstime(iserver)
data ← concat(bid, seq, ts local , tsserver , get time())
sign(data)

While it would be sufficient to only include the absolute

interval derived from ilocal in the timestamp, the interval

derived from iserver allows the auctioneer the mitigation of

high peak loads as described later on.

A sequence number is required to verify that all bids

signed by the smart card have been received at the server.

After the auction ended, we therefore require the smart card

to transfer the value of its sequence number to the server.

2) Server-side timestamp interpretation: Algorithm 6

shows how timestamps are interpreted at the server. First,

it is checked if there have been confirmed problems at

the auctioneer during all of the time represented by the

timestamp. If this is the case, we can use the adapt()
function, to decrease the size of tsserver accordingly.

As example, consider that the auctioneer’s monitoring

infrastructure confirms that there has been an additional

network delay of 10 seconds for messages that travel from

the network to the auctioneer. This would result in the right

hand side of each interval obtained over the network during

this delay—given as (T2 − T1)—to be increased by 10

seconds. Therefore, our adapt() function can shift the right

hand side of the interval 10 seconds to the left, to mitigate

for the increased propagation delay.

Finally, the algorithm calculates the actual timestamp

by building the intersection of tslocal and tsserver . While

under normal conditions tslocal is already a subset or equal

to tsserver , in cases where tsserver was recalculated with

adapt(), the intersection potentially allows to reduce the

size of the interval.

Algorithm 6 Timestamp processing at server

if signature incorrect then
abort with error()

else if tsserver ⊆ tconfirmed problems at auctioneer then
tsserver ← adapt(tsserver)

end if
tstimestamp ← intersection(tslocal , tsserver)

100

3) Decision if a bid should be accepted: Our application

scenario requires that any bid timestamped before the auc-

tion deadline must be accepted, while any bid timestamped

after the deadline must be rejected. In cases where both

interval endpoints are either before or after the deadline,

the decision is clear. However, in cases where the interval

overlaps with the deadline, the auctioneer cannot fully assert,

if a bid was placed before, or after the deadline.

In most cases, intervals of timestamps are relatively small.

The only case when a large interval will be assigned is

if there has not been any single time synchronization step

with a reasonable roundtrip delay and—additionally—if the

auctioneer did not detect any overload at his local network,

and thus does not call adapt() on the assigned timestamp. In

such cases it can be possible that large intervals are caused

by delay attacks caused by malicious bidders.

To mitigate for potential attacks, we are always comparing

the right hand side of an interval—which represents the

latest possible time of a bid—to the deadline. In cases

where intervals are small, it does not matter which part of

the interval is compared with the deadline, as the expected

interval size is at most a few hundred milliseconds. However,

in cases of large intervals—e.g. due to delay attacks—

comparing the right hand side to the deadline prevents these

large intervals from delaying the auction deadline for a

particular user.

The worst case from the bidders’ perspective occurs if

every single time synchronization step features high propa-

gation delays to the server, while there are no confirmed

problems at the auctioneers infrastructure. In such cases,

the deadline comparison with the interval’s right endpoint

advances the bidders’ deadline, and thereby requires bidders

to submit bids sometime before the auction deadline. How-

ever, as bidders can always query the smart card’s time, they

can detect such cases in advance, allowing them to also use

other mitigation strategies, such as switching to a different

network connection.

Figure 5 shows how this approach affects the accuracy

of time stamps with measurements based on our protocol

implementation. The example simulates a delay attack with

high propagation delays for responses sent from the server.

The “reference clock” is regarded as the server’s time, while

the “offset against reference clock” is the right hand endpoint

of the interval stored on the smart card. In the example the

effects of clock skew are negligible and therefore not visible.

Initially, the “offset against reference clock” is equal to the

propagation delay of the first time synchronization message

sent from the client to the server, as the formula for the right

endpoint (T2 − T1) is only dependent on the propagation

delay to the server, but not on the propagation delay of

responses sent by the server.

Subsequent time synchronization steps will calculate the

intersection of the smart card’s local offset interval and the

offset interval obtained from the time server. Therefore, with

potential delay attacks

Figure 5. Response to delay attack

each time synchronization step the right endpoint can either

stay equal or move to the left, but never to the right. This

behavior can be seen in Figure 5, as the “offset against

reference clock” only decreases but never increases as clock

skew is negligible.

In cases where the smart card’s clock skew would be

noticeable, the “offset against reference clock” would slowly

increase over time, but still be reset by each time synchro-

nization step, where the propagation delay to the server is

lower than the offset.

V. SMART CARD IMPLEMENTATION

In this section we examine techniques to implement our

approach on .NET cards and Java cards. While our general

approach is also applicable to other types of secure devices,

such as TPMs (Trusted Platform Modules), our original

application scenario, and thereby also our evaluation, targets

smart card environments.

To implement our time synchronization protocol on a

smart card, the smart card needs to possess the following

capabilities:

1) Access to an internal timer clocked by an oscillator

internal to the smart card. The frequency of the

oscillator must not depend on the frequency provided

by the card reader to the CLK contact.

2) A means to detect if the counter has been reset,

e.g., because the power supply to the smart card was

interrupted.

3) The ability to detect overflows of the counter. How-

ever, as explained later, a software based workaround

is possible, if this feature is missing.

A read-only timer is sufficient, as the difference between

the reference time and the timer’s value can be stored as a

variable on the smart card. Furthermore, we do not presume

a battery powered clock that allows keeping the time while

the secure device is not connected to a computer, as this

feature is not available on a majority of examined devices.

101

The NTP packet format is a potential cause for compati-

bility issues as smart cards need to successfully generate and

parse the individual fields of packets. This parsing cannot

be outsourced to external applications as smart cards must

be able to verify signatures applied by the time server. If

the values would be extracted by outside applications, smart

cards would have no means of verifying that the extracted

values actually correspond to the cryptographically signed

response of an NTP server.
NTP messages are parsed and generated on-card. The

smart card communicates via APDUs with a client appli-

cation running on the local PC, relaying NTP messages

between smart card and Internet. We use MD5 based signa-

tures as described in [10] with an individual key for each

smart card, requiring smart cards to provide an MD5 hash

function to on-card applications. While collisions in MD5

have been found [11], control over both, NTP client and

server implementations, allows us to increase the security

beyond the NTP specification by replacing MD5 with any

alternative hash function.
For the evaluation discussed below we implemented our

protocol on a Gemalto .NET IM V2 .NET smart card and—

additionally–tested the capabilities of a technology preview

release (simulator) of the connected edition for Java Card 3

and evaluated the limitations of Java Card 2 based on a

NXP JCOP 41 V2.2.1/72K card. All three types of cards

are programmable and allow the installation of appropriate

software.

A. .NET card
The .NET smart card API provides access to the

32-bit read-only System.Environment.TickCount
property that returns the the number of milliseconds passed

since the smart card has been powered on. The timer

within .NET cards runs continuously for 24.9 days un-

til it reaches Int32.MaxValue. Afterwards, it wraps

back to zero. According to the API, the resolution of the

TickCount property is at least 500 milliseconds. Similar

to System.currentTimeMillis() in Java Card 3, the

TickCount property can be used to measure the time

between two invocations.
The TickCount property overflows after 24.9 days,

making it impossible for the software running on the smart

card to assess whether e.g. 25.0 days or 0.1 days have

passed. This is mostly a theoretical issue, as the usual dura-

tion of auctions is much shorter in our application scenario.

Detection of overflows would be possible if the software

running on the smart card could check the value of the

TickCount property in intervals smaller than 24.9 days.

However, the .NET API does not allow for the execution

of background threads. Hence, code execution depends on

external APDUs transmitted to the smart card. As these

APDUs need to be transmitted over the bidders computer, it

cannot be guaranteed that the bidder abides by a policy of

sending APDUs with intervals smaller than 24.9 days.

To work around this problem, the auctioneer can limit

the maximum time allowed between the application of a

timestamp and the transmission to the auction system to

an interval smaller than the maximum value that can be

represented by the timer. While this does not prevent the

timer from overflowing, it allows the auction system to

detect if an overflow occurred.

Concluding, the .NET card fulfills our requirements with

the overflow restriction described above.

B. Java Card 3

In Java Card 3 the Application Programming Interface
for the Java Card Platform, Connected Edition provides a

System.currentTimeMillis() method that returns

the current time in milliseconds. While the Java Card API

also provides a method synchronizeTime() that allows

obtaining the time from an external time reference, the API

does not specify what external time reference is used by

implementations. Therefore, we cannot trust that the time

obtained by a Java Card 3 is valid, as the external time

reference can be under control of an adversary, e.g., if

the time is obtained from an external card reader. As a

consequence, our only assumption is that the difference in

the responses of two System.currentTimeMillis()
invocation reflects the interval in milliseconds between these

invocations.

A further complication is that some future Java Card

3 implementations might automatically obtain the time

from an external reference. In order to detect such events,

Java Card 3 allows to register an PlatformEvent.
EVENT_CLOCK_RESYNCED_URI event handler able

to detect event:///platform/clock/resynced
events. Such events are fired after the Java card obtained

its time from an external reference. The time delta between

the old time and the new time is included in the arguments

of the event handler. Capturing the events allows a time

synchronization protocol to mitigate the offsets caused by

such synchronization steps.

While Java Card version 3 has been standardized, there

are currently no cards available on the market. Consequently,

Java Card 3 only represents an option for the future.

C. Java Card 2

The official Java Card 2 API does not include methods

to access the timers of smart cards. However, there are

implementations of Java Card 2 compatible devices that

include access to an internal clock, such as the DS1955B

and DS1957B cryptographic iButtons produced by Dallas

Semiconductor (now a subsidiary of Maxim Integrated Prod-

ucts). The internal clock of these devices is quartz-driven

and powered by an internal battery. However, according to

information we received by a Maxim engineer, Java-powered

iButtons have been discontinued.

As a consequence, we based our Java Card 2 prototype

version on standard Java cards. While the API of these cards

102

does not provide access to a timer, we used a software based

timer simulation for evaluation purposes, by regularly up-

dating the value of an internal timer variable with incoming

APDUs and by providing a corresponding access function

that guarantees a strictly monotonic increasing behavior.

In our implementation it was not possible to provide a

System.currentTimeMillis() compatible interface,

as currentTimeMillis() returns a 64-bit long value,

while the largest data type supported by Java Card 2 is

(depending on the card) either signed 16-bit or signed 32-bit.

However, Java Card version 2.2.2 provides a BigNumber
class that allows using multiple smaller data types to sim-

ulate a larger data type. As, we could not obtain Java

cards implementing the relatively recent Java Card 2.2.2

specification, we implemented our own BigNumber-like

class based on a subset of the BigInteger class in Java

SE.

In a first preliminary performance evaluation we tested

a simple application that sums all integers between 10000
and 20000. On a JCOP card this test shows about 200
operations per second. In comparison, a .NET card natively

implementing the required data types is able to execute about

5800 operations per second, nearly a thirty-fold difference.

To sum up, Java cards version 2 are not adequate for

time synchronization. They miss standardized access to a

timer as well as appropriate data types to process time

synchronization packets.

VI. CONCLUSION

In this paper we contributed with a secure time syn-

chronization and timestamping approach for online auc-

tions. These auctions are characterized by high peak loads

near the end of auctions as well as high dependability

requirements. Traditionally, these requirements are met by

geographically distributed server clusters, leading to massive

over-provisioning and massive costs.

With the application of secure timestamps at the bidder’s

site, we can mitigate peak loads as well as node or link

failures as the transfer of timestamped bids can be delayed

until after a performance peak or the repair of a failed

component. However, simply implementing timestamping

in client-side software is not feasible as it is not possible

to effectively secure such software against attacks by cir-

cumventive bidders. Consequently, we contributed with a

secure time synchronization and timestamping protocol for

resource-constrained devices to enable secure timestamps to

be applied within smart cards, for example. Moreover, we

showed the feasibility of our approach based on a .NET

smart card implementation.

We are convinced that our approach contributes to in-

creased dependability and more efficient resource usage in

distributed applications able to benefit from a distributed

secure timestamping facility. While our application scenar-

ios cover online auctions of government bonds and CO2

certificates, we aim at broader application of our solution

approach in future work.

ACKNOWLEDGMENTS

The authors would like to thank Juraj Holtak for the

Java Card and .NET implementations of our time synchro-

nization protocol. This work has been partially funded by

the Austrian Federal Ministry of Transport, Innovation and

Technology under the FIT-IT project TRADE (Trustworthy

Adaptive Quality Balancing through Temporal Decoupling,

contract 816143, http://www.dedisys.org/trade/).

REFERENCES

[1] R. P. McAfee and J. McMillan, “Auctions and bidding,”
Journal of Economic Literature, vol. 25, no. 2, pp. 699–
738, June 1987. [Online]. Available: http://www.jstor.org/
pss/2726107

[2] L. Froihofer and K. M. Goeschka, “Balancing of dependabil-
ity and security in online auctions,” in Dependable Systems
and Networks, 2008. DSN ’08. International Conference on,
2008.

[3] D. Mills, “Network Time Protocol (Version 3) Specification,
Implementation and Analysis,” RFC 1305 (Draft Standard),
Mar. 1992. [Online]. Available: http://www.ietf.org/rfc/
rfc1305.txt

[4] M. Bishop, “A security analysis of the NTP protocol version
2,” in Computer Security Applications Conference, 1990.,
Proceedings of the Sixth Annual, Tucson, AZ, USA, Dec.
1990, pp. 20–29.

[5] K. Marzullo and S. Owicki, “Maintaining the time in a
distributed system,” in PODC ’83: Proceedings of the second
annual ACM symposium on Principles of distributed comput-
ing. ACM, 1983, pp. 295–305.

[6] G. Starnberger, L. Froihofer, and K. M. Goeschka, “QR-TAN:
Secure mobile transaction authentication,” in Availability,
Reliability and Security, 2009. ARES ’09. International
Conference on, Fukuoka, Mar. 2009, pp. 578–583. [Online].
Available: http://dx.doi.org/10.1109/ARES.2009.96

[7] J. Lundelius and N. A. Lynch, “An upper and lower bound
for clock synchronization,” Information and Control, vol. 62,
no. 2/3, pp. 190–204, 1984.

[8] K. Marzullo and S. Owicki, “Maintaining the time in a
distributed system,” SIGPS Oper. Syst. Rev., vol. 19, no. 3,
pp. 44–54, 1985.

[9] D. L. Mills, “Network time protocol version 4 reference
and implementation guide,” University of Delaware, Tech.
Rep. 06-6-1, June 2006. [Online]. Available: http://www.
eecis.udel.edu/∼mills/database/reports/ntp4/ntp4.pdf

[10] ——, Computer Network Time Synchronization: The Network
Time Protocol. Boca Raton, FL, USA: CRC Press, Inc., 2006.

[11] X. Wang and H. Yu, “How to break MD5 and other hash
functions,” in EUROCRYPT, ser. LNCS, R. Cramer, Ed.,
vol. 3494. Springer, 2005, pp. 19–35. [Online]. Available:
http://dx.doi.org/10.1007/11426639 2

103

